Chapitre 6 Le théorème du moment cinétique

6.1. Moment d'une force

6.1.1. Rappels sur le produit vectoriel

Rappels effectué en classe

6.1.2. Rappels sur les angles orientés

Rappels effectué en classe

6.1.3. Moment d'une force par rapport à un point O

Soit M un point de masse m, soumis à une force \overrightarrow{F} . Soit O un point fixe choisi.

Définition

Le moment d'une force en O est :

$$\overrightarrow{\Pi}_{O} = \overrightarrow{OM} \wedge \overrightarrow{F}$$

Le moment d'une force est un vecteur.

Remarque 6.1 Le moment d'une force dépend du point O que l'on a choisi; généralement $\overrightarrow{\Pi}_O \neq \overrightarrow{\Pi}_{O'}$ si $O \neq O'$.

6.1.4. Moment d'une force par rapport à un axe Δ

6.1.4.1. Définition

Soit M un point de masse m, soumis à une force \overrightarrow{F} . Soit Δ un axe fixe et O un point fixe appartenant à Δ .

Définition

Le moment d'une force par rapport à l'axe Δ est le projeté de $\overrightarrow{\Pi}_O$ sur cet axe :

$$\Pi_{\Delta} = \overrightarrow{\Pi}_{O}.\overrightarrow{u_{\Delta}} = \left(\overrightarrow{OM} \wedge \overrightarrow{F}\right).\overrightarrow{u_{\Delta}}$$

Le moment d'une force par rapport à un axe est un scalaire.

Remarque 6.2 Le moment d'une force, pour un axe Δ donné, ne dépend pas du point O que l'on a choisi sur cet axe (explication donnée en classe).

6.1.4.2. Cas d'une force colinéaire à Δ

$$\Pi_{\Delta} = \overrightarrow{\Pi}_{O}.\overrightarrow{u_{\Delta}} = \left(\overrightarrow{OM} \wedge \overrightarrow{F}\right).\overrightarrow{u_{\Delta}} = 0$$

car $\left(\overrightarrow{OM}\wedge\overrightarrow{F}\right)$ est orthogonal à $\overrightarrow{u_{\Delta}}$ puisque \overrightarrow{F} est suivant $\overrightarrow{u_{\Delta}}$.

6.1.4.3. Notions de bras de levier

Traité en classe

6.2. Le moment cinétique

6.2.1. Moment cinétique par rapport à un point O

Soit M un point de masse m, et soit O un point fixe choisi.

Définition

Le moment cinétique de M en O dans le référentiel R est par définition :

$$\overrightarrow{\sigma}_{O}(M)_{/R} = \overrightarrow{OM} \wedge (m \overrightarrow{v}(M)_{/R}).$$

Le moment cinétique par rapport à un point est un vecteur.

Remarque 6.3 Il est important, pour définir le moment cinétique, de bien préciser le référentiel R dans lequel il s'applique et aussi le point O auquel est appliqué le moment cinétique.

- Exemple 1 : le mouvement rectiligne passant par \mathcal{O} (traité en classe)
- Exemple 2 : le mouvement rectiligne ne passant pas par O (traité en classe).

6.2.2. Moment cinétique par rapport à un axe Δ

Soit M un point de masse m; soit Δ un axe fixe et O un point fixe appartenant à Δ .

Définition

Le moment cinétique de M par rapport à Δ dans le référentiel R est le projeté de $\overrightarrow{\sigma}_O(M)_{/R}$ sur cet axe :

$$\sigma_{\Delta}(M)_{/R} = \left(\overrightarrow{\sigma}_O(M)_{/R}\right).\overrightarrow{u_{\Delta}} = \left(\overrightarrow{OM} \wedge \left(m\overrightarrow{v}(M)_{/R}\right)\right).\overrightarrow{u_{\Delta}}.$$

Le moment cinétique par rapport à un axe est un scalaire.

6.3. Théorème du moment cinétique en référentiel Galiléen

6.3.1. Le théorème du moment cinétique par rapport à un point O

Le théorème du moment cinétique est une conséquence de principe fondamental de la dynamique à partir duquel il se démontre. On a :

$$\overrightarrow{\sigma}_O(M)_{/R} = m\overrightarrow{OM} \wedge \overrightarrow{v}(M)_{/R}$$

donc

$$\frac{d\overrightarrow{\sigma}_{O}(M)_{/R}}{dt} = m \left(\frac{d\overrightarrow{OM}}{dt}\right)_{/R} \wedge \overrightarrow{v}(M)_{/R} + m\overrightarrow{OM} \wedge \left(\frac{d\overrightarrow{v}(M)}{dt}\right)_{/R}$$

$$= m\overrightarrow{v}(M)_{/R} \wedge \overrightarrow{v}(M)_{/R} + \overrightarrow{OM} \wedge \left(\frac{d(m\overrightarrow{v}(M))}{dt}\right)_{/R}$$

$$= \overrightarrow{OM} \wedge \overrightarrow{F}(M)$$

soit

$$\frac{d\overrightarrow{\sigma}_O(M)_{/R}}{dt} = \overrightarrow{\Pi}_O.$$

qui est le théorème du moment cinétique.

6.3.2. Le théorème du moment cinétique projeté sur un axe Δ

Le théorème du moment cinétique projeté sur un axe Δ donne :

$$\left(\frac{d\overrightarrow{\sigma}_O(M)_{/R}}{dt} = \overrightarrow{\Pi}_O\right).\overrightarrow{u_\Delta}$$

soit

$$\frac{d\sigma_{\Delta}(M)_{/R}}{dt} = \Pi_{\Delta}.$$

6.4. Applications

6.4.1. Les mouvements à force centrale

Définition

Une force centrale est une force dont le support passe toujours par un même point fixe O.

Exemples:

- la force de gravitation agissant sur un satellite autour de la Terre : le point O est alors le centre de la Terre :

- la force de Coulomb agissant sur une charge mobile de la part d'une charge fixe : la force s'appliquant sur la charge mobile est toujours dirigée vers O (charge fixe).

SCHEMA A FAIRE

On a:

$$\overrightarrow{\Pi}_{O} = \overrightarrow{OM} \wedge \overrightarrow{F} = \overrightarrow{O}$$

car la force est centrale, donc toujours dirigée suivant \overrightarrow{OM} . On en conclue :

$$\frac{d\overrightarrow{\sigma}_O(M)_{/R}}{dt} = \overrightarrow{0}$$

donc

$$\overrightarrow{\sigma}_O(M)_{/R} = \overrightarrow{cte}.$$

Le moment cinétique d'un mouvement à force centrale reste constant.

Cela a plusieurs conséquences.

Le mouvement est plan

$$\overrightarrow{\sigma}_O(M)_{/R} = m\overrightarrow{OM} \wedge \overrightarrow{v}(M)_{/R} = \overrightarrow{cte} = cte.\overrightarrow{u_z}.$$

donc \overrightarrow{OM} reste toujours orthogonal au vecteur constant $\overrightarrow{\sigma}_O$: la trajectoire est plane et situé dans un plan perpendiculaire à $\overrightarrow{\sigma}_O$ et contenant O.

La constante des aires

Calculons $\overrightarrow{\sigma}_O$ dans le système de coordonnées cylindriques de centre O avec $\overrightarrow{u_z}$ vecteur unitaire suivant $\overrightarrow{\sigma}_O$.

$$\overrightarrow{\sigma}_O(M)_{/R} = m\overrightarrow{OM} \wedge \overrightarrow{v}(M)_{/R}$$

$$= m(ru_r) \wedge \left(\dot{r} \overrightarrow{u_r} + r \overset{\cdot}{\theta} \overrightarrow{u_\theta}\right)$$

$$= mr^2 \overset{\cdot}{\theta} \overrightarrow{u_z} = \overrightarrow{cte}$$

donc

$$r^2 \stackrel{\cdot}{\theta} = \text{constante},$$

qui est appelée constante des aires.

Si l'on prend l'exemple de la trajectoire d'une comète autour du soleil, quand cette comète s'approche (donc r diminue) alors $\hat{\theta}$ augmente : la vitesse angulaire devient plus importante.

6.4.2. Exemple du pendule simple

Traité en TD